1 F. SCAN MDCS FOR SECTION 7.3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

- 2 The methodology used to determine the scan MDC is based on NUREG-1507 (NRC 1998b). An
- 3 overview of the approach to determine scan MDCs follows:
- Calculate the fluence rate relative to the exposure rate (FRER) for the range of energies of interest (Section F.1),
 - Calculate the probability of interaction (P) between the radiation of interest and the detector (Section F.2),
 - Calculate the relative detector response (RDR) for each of the energies of interest (Section F.3),
 - Determine the relationship between the detector's net count rate to net exposure rate in counts per minute per microRoentgen per hour, (cpm per μ R/h, Section F.4),
 - Determine the relationship between the detector response and the radionuclide concentration (Section F.5),
 - Obtain the minimum detectable count rate (MDCR) for the ideal observer, for a given level of performance, by postulating detector background and a scan rate or observation interval (Section F.6), and
 - Relate the MDCR for the ideal observer to a radionuclide concentration (in Bq/kg) to calculate the scan MDC (Section F.7).

F.1 Calculate the Relative Fluence Rate to Exposure Rate (FRER)

- 20 For particular gamma energies, the relationship of NaI scintillation detector count rate
- and exposure rate may be determined analytically (in cpm per $\mu R/h$). The approach is to
- determine the gamma fluence rate necessary to yield a fixed exposure rate (μ R/h) as a
- function of gamma energy. The fluence rate, following NUREG-1507 (NRC 1998b), is
- 24 directly proportional to the exposure rate and inversely proportional to the incident
- 25 photon energy and mass energy absorption coefficient. That is,

26 Fluence Rate(FRER)
$$\propto \dot{X} \frac{1}{E_{\gamma}} \frac{1}{(\mu_{en}/\rho)_{air}}$$
 (F-1)

Where:

- 28 \dot{X} = the exposure rate (set equal to 1 μ R/hr for these calculations)
- 29 E_{γ} = energy of the gamma photon of concern (keV)
- 30 $(\mu_{\rm en}/\rho)_{\rm air}$ = mass energy absorption coefficient in air at the gamma photon energy of
- 31 concern (cm^2/g)
- 32 The mass energy absorption coefficients in air are presented in Table F-1 (natural uranium) and
- Table F-2 (natural thorium) along with the calculated fluence rates (up to a constant of
- 34 proportionality, since only the ratios of these values are used in subsequent calculations). Note
- 35 that while the mass energy absorption coefficients in air, $(\mu_{en}/\rho)_{air}$, are tabulated values (NIST
- 36 1996), the selected energies are determined by the calculation of the detector response based on
- 37 radionuclide concentration (see Section F.5).

F.2 Calculate the Probability of Interaction

- 39 Assuming that the primary gamma interaction producing the detector response occurs through
- 40 the end of the detector (i.e., through the beryllium window of the detector, as opposed to the
- sides), the probability of interaction (P) for a gamma may be calculated using Equation F-2:

42
$$P = 1 - e^{-(\mu/\rho)_{\text{Nal}}(x)(\rho_{\text{Nal}})} = 1 - e^{-(0.117 \text{ cm}^2/\text{g})(0.16 \text{ cm})(3.67 \text{ g/cm}^3)} = 0.066 \text{ at } 400 \text{ keV}$$
 (F-2)

43 Where:

38

- 44 P = probability of interaction (unitless)
- 45 $(\mu/\rho)_{\text{NaI}}$ = mass attenuation coefficient of FIDLER NaI crystal at the energy of
- 46 interest (e.g., $0.117 \text{ cm}^2/\text{g}$ at 400 keV)
- 47 x = thickness of the thin edge of the FIDLER NaI crystal (0.16 cm)
- 48 ρ = density of the NaI crystal (3.67 g/cm³)
- The mass attenuation coefficients for the NaI crystal and the calculated probabilities for each of
- 50 the energies of interest are presented in Table F.1 (natural uranium) and Table F.2 (natural
- 51 thorium). The mass attenuation coefficients for NaI were calculated using the XCOM program
- 52 (NIST 1998).

Table F.1 Calculation of Detector Response to Natural Uranium

						cpm per
Energy	$(\mu_{ m en}/ ho)_{ m air}$	FRER	$(\mu/\rho)_{ m NaI}$	P	RDR	μR/h
(keV)	(cm^2/g)	(Section F.1)	cm ² /g	(Section F.2)	(Section F.3)	(Section F.4)
15	1.334	0.04998	47.4	1.000	0.04998	28,374
20	0.5389	0.09278	21.8	1.000	0.09278	52,678
30	0.1537	0.2169	7.36	0.9867	0.2140	121,498
40	0.06833	0.3659	18.8	1.000	0.3659	207,725
50	0.04098	0.4880	10.5	0.9979	0.4870	276,511
60	0.03041	0.5481	6.45	0.9773	0.5356	304,123
80	0.02407	0.5193	3.00	0.8282	0.4301	244,204
100	0.02325	0.4301	1.67	0.6249	0.2688	152,606
150	0.02496	0.2671	0.611	0.3015	0.08052	45,717
200	0.02672	0.1871	0.328	0.1752	0.03278	18,613
300	0.02872	0.1161	0.166	0.09288	0.01078	6,120
400	0.02949	0.08477	0.117	0.06640	0.005629	3,196
500	0.02966	0.06743	0.0950	0.05426	0.003659	2,077
600	0.02953	0.05644	0.0822	0.04712	0.002660	1,510
662	0.02931	0.05154	0.0766	0.04398	0.002267	1,287
800	0.02882	0.04337	0.0675	0.03886	0.001685	957
1,000	0.02789	0.03586	0.0588	0.03394	0.001217	691
1,500	0.02547	0.02617	0.0470	0.02722	0.0007125	405
2,000	0.02345	0.02132	0.0415	0.02407	0.0005133	291

Table F.2 Calculation of Detector Response for Natural Thorium

						cpm per
Energy	$(\mu_{ m en}/ ho)_{ m air}$	FRER	$(\mu/\rho)_{\mathrm{NaI}}$	P	RDR	μR/h
(keV)	(cm^2/g)	(Section F.1)	cm²/g	(Section F.2)	(Section F.3)	(Section F.4)
40	0.06833	0.3659	18.8	1.000	0.3659	207,725
60	0.03041	0.5481	6.45	0.9773	0.5356	304,123
80	0.02407	0.5193	3.00	0.8282	0.4301	244,204
100	0.02325	0.4301	1.67	0.6249	0.2688	152,606
150	0.02496	0.2671	0.611	0.3015	0.08052	45,717
200	0.02672	0.1871	0.328	0.1752	0.03278	18,613
300	0.02872	0.1161	0.166	0.09288	0.01078	6,120
400	0.02949	0.08477	0.117	0.06640	0.005629	3,196
500	0.02966	0.06743	0.0950	0.05426	0.003659	2,077
600	0.02953	0.05644	0.0822	0.04712	0.002660	1,510
662	0.02931	0.05154	0.0766	0.04398	0.002267	1,287
800	0.02882	0.04337	0.0675	0.03886	0.001685	957
1,000	0.02789	0.03586	0.0588	0.03394	0.001217	691
1,500	0.02547	0.02617	0.0470	0.02722	0.0007125	405
2,000	0.02343	0.02134	0.0415	0.02407	0.0005137	292
3,000	0.02057	0.01620	0.0368	0.02138	0.0003464	197

55 F.3 Calculate the Relative Detector Response

- The relative detector response (RDR) for each of the energies of interest is determined by
- 57 multiplying the FRER by P. The results are presented in Table F.1 (natural uranium) and Table
- F.2 (natural thorium).

F.4 Relationship Between Detector Response and Exposure Rate

- Using the same methodology described in Sections F.1 through F.3, FRER, P, and RDR are
- calculated at the cesium-137 (¹³⁷Cs) energy of 662 keV and are presented in Table F.1 and Table
- 62 F.2. The manufacturer of the FIDLER NaI detector provides an estimated response of the crystal
- in a known radiation field, which is 1,287 cpm per μ R/h at the ¹³⁷Cs energy of 662 keV. The
- response at 662 keV can be used to determine the response at all other energies of interest using
- 65 Equation F-3:

59

$$\frac{\text{cpm}}{\mu R/h_{E_i}} = \left(\frac{1,287 \text{ cpm}}{\mu R/h}\right) \times \frac{\text{RDR}_{E_i}}{\text{RDR}_{137}}$$
 (F-3)

- 67 Where:
- E_i = energy of the photon of interest (keV),
- 69 $\frac{\text{cpm}}{\mu R/h_{E_i}}$ = response of the detector for energies of interest, Table F.1 and Table F.2,
- $RDR_{E_a} = RDR$ at the energy of interest, Table F.1 and Table F.2, and
- 71 RDR₁₃₇ $_{C_8}$ = RDR for ¹³⁷Cs, Table F.1 and Table F.2.
- 72 The responses in cpm per μ R/h for each of the decay energies of interest are presented in Table
- F.1 and Table F.2.

74 F.5 Relationship Between Detector Response and Radionuclide

75 **Concentration**

- 76 The minimum detectable exposure rate is used to determine the MDC by modeling a specific
- impacted area. The relationship between the detector response (in cpm) and the radionuclide
- 78 concentration (in Bq/kg) uses a computer gamma dose modeling code to model the presence of a
- 79 normalized 1 Bq/kg total activity source term for natural uranium and natural thorium. The
- following assumptions from NUREG-1507 (NRC 1998b) were used to generate the computer
- 81 gamma dose modeling runs:
- Impacted media is concrete,
- Density of concrete is 2.3 g/cm³,

- 84 Activity is uniformly distributed into a layer of crushed concrete 15 cm thick,
- 85 • Measurement points are 10 cm above the concrete surface,
- Areas of elevated activity are circular with an area of 0.25 m² and a radius of 28 cm. 86
- 0.051 cm beryllium shield simulates the window of the FIDLER detector, and 87
- 88 Normalized 1 Bq/kg source term decayed for 50 years to allow ingrowth of decay 89 progeny.
- 90 The weighted cpm per $\mu R/h$ response (weighted instrument sensitivity $[WS_i]$) for each decay
- 91 energy is calculated by multiplying the μ R/h at 1 Bq/kg (exposure rate with buildup, R_i) by the
- 92 cpm per μ R/h and dividing by the total μ R/h (at 1 Bq/kg) for all decay energies of interest
- 93 (equation F-4):

$$WS_i = \frac{R_i \times (\text{cpm per } \mu R / h)}{R_T}$$
 (F-4)

95 Where:

99

- 96 WS_i = weighted instrument sensitivity (cpm per μ R/h), and
- 97 R_i = exposure rate with buildup (μ R/h)
- R_T = Total exposure rate with buildup (μ R/h) 98

100

- Calculate the percent of FIDLER response for each of the decay energies of interest by dividing
- 101 WS_i by the total weighted cpm per $\mu R/h$ and multiplying by 100 percent (equation F-5):

102 Percent of FIDLER response =
$$\frac{WS_i \times 100\%}{W_T}$$
 (F-5)

- 103 Where:
- 104 W_T = Total WS_i weighted instrument sensitivity (cpm per $\mu R/h$).
- 105 The exposure rates for each of the decay energies of interest are presented in Table F.3
- 106 (assuming natural uranium for the source term) and Table F.4 (assuming natural thorium for the
- 107 source term).

Table F.3 Detector Response to Natural Uranium

Energy keV	R _i (µR/h) (Section F.5)	cpm per µR/h (Section F.4)	WS _i (cpm per μR/h) (Section F.5)	Percent of FIDLER Response (Section F.5)
15	4.473×10 ⁻¹⁰	28,374	0	0.00%
20	3.597×10 ⁻¹²	52,678	0	0.00%
30	2.623×10 ⁻⁰⁷	121,498	226	0.504%
40	1.299×10 ⁻¹⁰	207,725	0	0.00%
50	1.052×10 ⁻⁰⁷	276,511	206	0.460%
60	5.065×10 ⁻⁰⁶	304,123	10903	24.3%
80	1.518×10 ⁻⁰⁶	244,204	2625	5.86%
100	2.309×10 ⁻⁰⁵	152,606	24938	55.7%
150	5.138×10 ⁻⁰⁶	45,717	1663	3.71%
200	2.881×10 ⁻⁰⁵	18,613	3796	8.48%
300	2.237×10 ⁻⁰⁷	6,120	10	0.0216%
400	2.434×10 ⁻⁰⁷	3,196	6	0.0123%
500	4.208×10 ⁻⁰⁷	2,077	6	0.0138%
600	2.048×10 ⁻⁰⁶	1,510	22	0.0489%
800	1.478×10 ⁻⁰⁵	957	100	0.224%
1,000	5.759×10 ⁻⁰⁵	691	282	0.629%
1,500	1.695×10 ⁻⁰⁶	405	5	0.0108%
2,000	2.841×10 ⁻⁰⁷	291	1	0.00131%
Total	1.413×10 ⁻⁰⁴		44,923	100%

Table F.4 Detector Response to Natural Thorium

Energy keV	R _i (µR/h) (Section F.5)	cpm per µR/h (Section F.4)	WS _i (cpm per μR/h) (Section F.5)	Percent of FIDLER Response (Section F.5)
40	1.299×10 ⁻⁰⁶	207,725	10	0.266%
60	1.816×10 ⁻⁰⁶	304,123	21	0.544%
80	1.989×10 ⁻⁰⁴	244,204	1855	47.8%
100	5.027×10 ⁻⁰⁵	152,606	293	7.55%
150	5.862×10 ⁻⁰⁵	45,717	102	2.64%
200	1.135×10 ⁻⁰³	18,613	807	20.8%
300	8.922×10 ⁻⁰⁴	6,120	209	5.37%
400	1.105×10 ⁻⁰⁴	3,196	13	0.348%
500	8.146×10 ⁻⁰⁴	2,077	65	1.67%
600	2.218×10 ⁻⁰³	1,510	128	3.30%
800	2.892×10 ⁻⁰³	957	106	2.72%
1,000	6.443×10 ⁻⁰³	691	170	4.38%
1,500	2.062×10 ⁻⁰³	405	32	0.821%
2,000	5.822×10 ⁻⁰⁵	292	1	0.0167%
3,000	9.249×10 ⁻⁰³	197	69	1.79%
Total	2.619×10 ⁻⁰²		3881	100%

110 F.6 Calculation of Scan Minimum Detectable Count Rates

- In the computer gamma dose modeling, an impacted area with a radius of 28 cm or
- approximately 0.25 m was assumed. Using a scan speed of 0.25 meters per second (m/s)
- provides an observation interval of one second.
- 114 A typical background exposure rate is 10 μ R/h. Using a conversion factor based upon field
- measurements of 1,287 cpm per μ R/h for ¹³⁷Cs (see Section F.4) results in an estimated
- background count rate of 12,870 cpm. Converting this value from cpm to counts per second
- 117 (cps) using Equation F-6 results in a background of 214.5 cps.

118
$$b(\text{cpm}) \times \frac{1 \text{ min}}{60 \text{ sec}} \times i(\text{sec}) = \frac{1,287 \text{ cpm}}{1 \mu \text{R/h}} \times 10 \mu \text{R/h} \times \frac{1 \text{ min}}{60 \text{ sec}} \times 1 \text{ sec} = 214.5 \text{ cps}$$
 (F-6)

- 119 Where:
- b = background count rate (12,870 cpm)
- i = the observation interval length (one second)
- The MDCR is calculated using the methodology in NUREG-1507 (NRC 1998b) shown in
- 123 Equations F-7 and F-8:

124
$$s_i = d'\sqrt{b_i} = 1.38 \times \sqrt{214.5} = 20.21 \text{ counts}$$
 (F-7)

125
$$s_{i, surveyor} = \frac{d'\sqrt{b_i}}{\sqrt{p}} = \frac{1.38 \times \sqrt{214.5}}{\sqrt{0.5}} = 28.58 \text{ counts}$$

126 MDCR =
$$s_i \times (60/i) = 20.21 \times (60/1) = 1,212 \text{ cpm}$$
 (F-8)

127
$$MDCR_{surveyor} = s_{i, surveyor} \times (60/i) = 28.58 \times (60/1) = 1,715 \text{ cpm}$$

- Where:
- 129 b_i = the average number of counts in the background interval (214.5 counts)
- i = the observation interval length (one second)
- 131 p = efficiency of a less than ideal surveyor, range of 0.5 to 0.75 from
- NUREG-1507 (NRC 1998b); a value 0.5 was chosen as a conservative
- 133 value

134	d'	= detectability index from Table 6.1 of NUREG-1507 (NRC 1998b); a
135		value of 1.38 was selected, which represents a true positive detection rate
136		of 95% and a false positive detection rate of 60%
137	S_i	= minimum detectable number of net source counts in the observation
138		interval (counts)
139	$S_{i,surveyor}$	= minimum detectable number of net source counts in the observation
140		interval by a less than ideal surveyor
141	MDCR	= minimum detectable count rate (cpm)
142	MDCR _{surveyor}	= MDCR by a less than ideal surveyor (cpm)
143		

F.7 Calculate the Scan Minimum Detectable Concentration

The scan minimum detectable concentration (MDC) can be calculated from the minimum detectable exposure rate (MDER). The MDER can be calculated using the previously calculated total weighted instrument sensitivities (WS_i), in cpm per μ R/h, for natural uranium and natural thorium as shown in equations F-9 and F-10:

$$MDER = \frac{MDCR_{surveyor}}{W_T}$$
 (F-9)

Scan MDC =
$$C \times \frac{\text{MDER}}{R_T}$$
 (F-10)

Where:

162

144

152	MDER	= MDER for the "ith" source term, by a less than ideal surveyor, $(\mu R/h)$				
153	$MDCR_{surveyor}$	= MDCR rate by a less than ideal surveyor (cpm), from Section F.5				
154	W_T	= Total weighted instrument sensitivity (cpm per μ R/h, Table F.3 and				
155		Table F.4)				
156	R_T	= Total exposure rate with buildup (μ R/h, Table F.3 and Table F.4)				
157	C	= concentration of source term (set at 1 Bq/kg in Section F.5)				
158	Scan MDC	= minimum detectable concentration (Bq/kg)				
159	The Scan MDCs for t	he FIDLER were calculated using Equations F-9 and F-10, and the				
160	instrument response information from Table F.3 (assuming natural uranium as the source term)					
161	and Table F.4 (assuming natural thorium as the source term). The scan MDCs for natural					

uranium and natural thorium using a FIDLER are listed in Table F.5.

Table F.5 Scan MDCs for FIDLER

Source Term	MDCR _{surveyor} (cpm) Section F.6	W _T (cpm per μR/h) Section F.5	MDER (µR/h) Section F.7	R _T (μR/h) Section F.5	C (Bq/kg) Section F.5	Scan MDC (Bq/kg) Section F.7
Natural Uranium	1,715	44,786	0.03829	1.413×10 ⁻⁰⁴	1	271 ≈ 300
Natural Thorium	1,715	3,881	0.4419	2.619×10 ⁻⁰²	1	16.9 ≈ 20

The scan MDCs of approximately 300 Bq/kg for uranium and 20 Bq/kg for thorium are both less

than their respective NUREG-1640-based activity action levels of 38,000 and 330 Bq/kg,

respectively.